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Motivation

Two-dimensional stochastic Navier-Stokes equations
(SNSE’s) describe the time evolution of an
incompressible fluid in a smooth bounded planar
domain. SNSE’s are well-studied:

[D-Z.2] and the references therein (additive noise);

[Fl.1] and [S-S]: existence and uniqueness of solutions
(multiplicative noise);

[Fl.2], [M-Y] and [H-M]:Ergodic properties and
invariant measures (additive random “kicks");

[S-S]: small noise and large deviations;

[Gourcy]: large deviations of occupation measures.
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The SNSE

Consider the two-dimensional stochastic Navier-Stokes
equation (SNSE) on a smooth bounded domain D, driven
by affine linear multiplicative white noise:

du − ν4u dt + (u · ∇)u dt + ∇p dt

= γu dt + σ0 dW0(t, x) +
∞

∑

k=1

σku(t) dWk(t),

(∇ · u)(t, x) = 0, x ∈ D, t > 0,

u(t, x) = 0, x ∈ ∂D, t > 0,

u(0, x) = f(x), x ∈ D.






























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

(1)
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SNSE-contd

D := bounded domain in R
2 with smooth boundary ∂D;

u(t, x) ∈ R
2 is the velocity field at time t and position

x ∈ D;

4 := Dirichlet Laplacian on D;

p(t, x) := pressure field;

0 < ν := viscosity coefficient;

W0(t, x) := additive space-time noise, white in t, smooth
in x; σ0 constant;
σk ∈ L(R2), k ≥ 1, commuting, symmetric (2 × 2)-

matrices-
∞

∑

k=1

|σk|
2 < ∞, |σk|

2 := tr(σ2
k);
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SNSE-contd

Wk := independent one-dimensional standard Brownian
motions, k ≥ 1, defined on a complete filtered Wiener
space (Ω,F , (Ft)t≥0, P );

Wk, k ≥ 1, independent of W0;

γu dt := deterministic linear drift term with a fixed
parameter γ;

initial velocity f : D → R
2.
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Convention

Perfection:
A family of propositions {P (ω) : ω ∈ Ω} holds perfectly
in ω if there is a sure event Ω∗ ∈ F such that
θ(t, ·)(Ω∗) = Ω∗ for all t ∈ R and P (ω) is true for every
ω ∈ Ω∗.

Perfection is a non-trivial property in
infinite-dimensional settings. ([M-S], [M-Z-Z])

Regularity:

C1,1 = Fréchet differentiable with derivatives Lipschitz

on bounded sets.
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Objectives

To establish:

existence of a perfect locally compacting C1,1

cocycle (semiflow) generated by all solutions of the
stochastic Navier-Stokes equation;

large-time asymptotics for the linearized stochastic
semiflow on a stationary solution, given by a
countable non-random Lyapunov spectrum of the
cocycle;

existence of flow-invariant C1 local stable/unstable
manifolds in the neighborhood of a hyperbolic
stationary solution;

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.8/78



Objectives

To establish:

existence of a perfect locally compacting C1,1

cocycle (semiflow) generated by all solutions of the
stochastic Navier-Stokes equation;

large-time asymptotics for the linearized stochastic
semiflow on a stationary solution, given by a
countable non-random Lyapunov spectrum of the
cocycle;

existence of flow-invariant C1 local stable/unstable
manifolds in the neighborhood of a hyperbolic
stationary solution;

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.8/78



Objectives

To establish:

existence of a perfect locally compacting C1,1

cocycle (semiflow) generated by all solutions of the
stochastic Navier-Stokes equation;

large-time asymptotics for the linearized stochastic
semiflow on a stationary solution, given by a
countable non-random Lyapunov spectrum of the
cocycle;

existence of flow-invariant C1 local stable/unstable
manifolds in the neighborhood of a hyperbolic
stationary solution;

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.8/78



Objectives

To establish:

existence of a perfect locally compacting C1,1

cocycle (semiflow) generated by all solutions of the
stochastic Navier-Stokes equation;

large-time asymptotics for the linearized stochastic
semiflow on a stationary solution, given by a
countable non-random Lyapunov spectrum of the
cocycle;

existence of flow-invariant C1 local stable/unstable
manifolds in the neighborhood of a hyperbolic
stationary solution;

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.8/78



Objectives-contd

existence of a countable, flow-invariant C1 local
foliation through an ergodic stationary point (when
γ = 0);

existence of a countable, global invariant flag
relative to an ergodic stationary point (when γ = 0);

sufficient conditions on the parameters ν, γ,
σi, i ≥ 1, (with σ0 = 0) and the geometry of the
domain D to guarantee uniqueness and
hyperbolicity of the stationary solution (viz. the zero
equilibrium).
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The set-up

Consider the Hilbert space

V := {v ∈ H1
0(D,R2) : ∇ · v = 0 a.e. in D},

with the norm

||v||V :=
(

∫

D

|∇v(x)|2 dx
)

1

2

and inner product � ·, · �.
H := closure of V in the L2-norm

|v|H :=
(

∫

D

|v(x)|2 dx
)

1

2 .
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Set-up-contd

< ·, · >:= inner product on H .

PH : L2(D,R2) → H := the Helmholtz-Hodge
projection.

The (Stokes) operator A in H is given by

Au := −νPH4u, u ∈ H2(D,R2) ∩ V.

Define the bilinear operator B by

B(u, v) := PH

(

(u · ∇)v
)

,

whenever u, v are such that (u · ∇v) belongs to L2.
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The evolution equation

Short notation: B(u) := B(u, u).

Apply the projection PH to each term of the SNSE (1)
and get abstract form:

du(t)+Au(t) dt + B(u(t)) dt

= γu(t) dt + σ0 dW0(t) +
∞

∑

k=1

σH
k u(t) dWk(t)

u(0) = f ∈ H























(2)
in L2(0, T ; V ′); V ′ := dual of V ;
σH

k f := PH(σk ◦ f), f ∈ H .
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Existence of the Cocycle

We show that strong solutions of the SNSE generate a
Fréchet C1,1 locally compacting cocycle (viz. stochastic
semiflow) u : R

+ ×H ×Ω → H on the Hilbert space H .

Use a variational technique which transforms the SNSE

into a random NSE. Then analyze the random NSE

via a priori estimates coupled with lengthy estimates on

Galerkin approximations. (cf. [Te], [Ro]).
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Existence of the Cocycle-contd

Consider the SNSE


























du(t, f) + Au(t, f)dt + B(u(t, f))dt

= γu(t, f) dt + σ0 dW0(t) +
∞

∑

k=1

σH
k u(t, f) dWk(t),

t > 0,

u(0, f) = f ∈ H.

(3)
For each f ∈ H , the SNSE (3) admits a unique strong

solution

u(·, f) ∈ L2(Ω; C([0, T ]; H)) ∩ L2(Ω × [0, T ]; V )

([B-C-F]).
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The Cocycle: Theorem

Let u(t, f, ·) be the unique global solution of the SNSE
(3) for t ≥ 0 and f ∈ H . Denote by θ : R

+ ×Ω → Ω the
standard Brownian shift

θ(t, ω)(s) := ω(t + s) − ω(t), t, s ≥ 0, ω ∈ Ω, (4)

on Wiener space (Ω,F , P ).

Then there is a version u : R+ × H × Ω → H of the
solution of (3) with the following properties:
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The Cocycle: Theorem-contd

The map u : R+ × H × Ω → H is jointly
measurable, and for each f ∈ H , the process
u(·, f, ·) : R+ × Ω → H is (Ft)t≥0-adapted.

For each t > 0 and ω ∈ Ω, the map
u(t, ·, ω) : H → H takes bounded sets into relatively
compact sets.

(u, θ) is a C1,1 perfect cocycle; viz.

u(t2, u
(

t1, f, ω), θ(t1, ω)) = u(t1 + t2, f, ω) (5)

for all t1, t2 ≥ 0, f ∈ H , ω ∈ Ω.

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.16/78



The Cocycle: Theorem-contd

The map u : R+ × H × Ω → H is jointly
measurable, and for each f ∈ H , the process
u(·, f, ·) : R+ × Ω → H is (Ft)t≥0-adapted.

For each t > 0 and ω ∈ Ω, the map
u(t, ·, ω) : H → H takes bounded sets into relatively
compact sets.

(u, θ) is a C1,1 perfect cocycle; viz.

u(t2, u
(

t1, f, ω), θ(t1, ω)) = u(t1 + t2, f, ω) (5)

for all t1, t2 ≥ 0, f ∈ H , ω ∈ Ω.

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.16/78



The Cocycle: Theorem-contd

The map u : R+ × H × Ω → H is jointly
measurable, and for each f ∈ H , the process
u(·, f, ·) : R+ × Ω → H is (Ft)t≥0-adapted.

For each t > 0 and ω ∈ Ω, the map
u(t, ·, ω) : H → H takes bounded sets into relatively
compact sets.

(u, θ) is a C1,1 perfect cocycle; viz.

u(t2, u
(

t1, f, ω), θ(t1, ω)) = u(t1 + t2, f, ω) (5)

for all t1, t2 ≥ 0, f ∈ H , ω ∈ Ω.

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.16/78



The Cocycle: Theorem-contd

For each (t, f, ω) ∈ R
+ × H × Ω, the Fréchet

derivative Du(t, f, ω) ∈ L
(

H
)

of the map u(t, ·, ω)
is compact linear, and the map

R
+ × H × Ω −→ L

(

H
)

(t, f, ω) 7−→ Du(t, f, ω)

is strongly measurable.
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The Cocycle: Theorem-contd

For fixed ρ, a > 0,

E log+ sup
0≤t1,t2≤a

|f |H≤ρ

{

|u(t2, f, θ(t1, ·))|H

+ ‖Du(t2, f, θ(t1, ·))‖L(H)

}

< ∞.

(6)
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The cocycle property

H H H

Ω
ω θ(t1, ω) θ(t1 + t2, ω)

t = 0 t = t1 t = t1 + t2

u(t1, ·, ω) u(t2, ·, θ(t1, ω))

θ(t1, ·) θ(t2, ·)

•f

•
u(t1, f, ω)

•u(t1 + t2, f, ω)
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Proof of Theorem: Sketch

Define u : R+ × H × Ω → H by setting

u(t, f, ω) := Q(t, ω)[v(t, f, ω) + Z(t, ω)], (7)

for t ≥ 0, ω ∈ Ω, f ∈ H; Q : [0,∞) × Ω → L(R2)
satisfies

Q(t) = I + γ

∫ t

0

Q(s) ds +
∞

∑

k=1

∫ t

0

σkQ(s) dWk(s), t ≥ 0,

(8)

Z(t) := σ0

∫ t

0

Q(s)−1Tt−s dW0(s), t ≥ 0;
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Proof of Theorem-contd

Tt := exp (−tA) : H → H, t ≥ 0, semigroup of −A.

Let v(t) ≡ v(t, f) satisfy the random NSE:

dv(t) = −Av(t) dt

− Q(t)B
(

Q(t)(v(t) + Z(t)), v(t) + Z(t)
)

dt, t ≥ 0,

v(0) = f ∈ H .











(9)
Existence of a unique global solution to the random

NSE (9) follows by Galerkin approximations, a priori
estimates and compactness of the embedding V → H .
Obtain Lipschitz and Fréchet differentiability (C1,1)
properties for v and hence for u using very lengthy
estimates on v and its Gateaux derivatives.
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Proof of Theorem-contd

To show the perfect cocycle property for u, observe that
Q has the cocycle property

Q(t1+t2, ω) = Q
(

t2, θ(t1, ω)
)

Q(t1, ω), t1, t2 ≥ 0, ω ∈ Ω.

(10)
The cocycle property for u will follow from the identity

Q(t1, ω)[v(t1 + t2, f, ω) + Tt2Z(t1, ω)]

= v
(

t2, Q(t1, ω)[v(t1, f, ω) + Z(t1, ω)], θ(t1, ω)
)

(11)
for t1, t2 ≥ 0, ω ∈ Ω, f ∈ H . Above identity holds by

uniqueness of the solution to the random NSE (9).
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Proof of Theorem-contd

To prove the integrability estimate in the theorem:

Let
0 ≤ t1, t2 ≤ a and f ∈ H with |f |H ≤ ρ. Then by an a
priori estimate on v:

|u
(

t2, f, θ(t1, ω)
)

|H

= Q(t2, θ(t1, ω)|v
(

t2, f, θ(t1, ω)
)

+ Z(t2, θ(t1, ω)|H

≤ Q(t2, θ(t1, ω)[|f |H + c(ω)]

≤ [ρ + c(ω)]‖Q‖∞‖Q−1‖∞, (12)

where ‖Q−1‖∞ := sup
0≤t≤2a

‖Q−1(t)‖ and E log c < ∞.

Using a priori estimates on Dv, we obtain
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Proof of Theorem-contd

‖Du
(

t2, f, θ(t1, ω)
)

‖L(H)

= Q(t2, θ(t1, ω)‖Dv
(

t2, f, θ(t1, ω)
)

‖L(H)

≤ c1(ω)‖Q‖∞‖Q−1‖∞ exp{c2(ω)|f |2H} (13)

where
E log c1 < ∞, Ec2 < ∞.
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Proof of Theorem-contd

The above two estimates imply

E log+ sup
0≤t1,t2≤a

|f |H≤ρ

|u(t2, f, θ(t1, ·))|H

+ E log+ sup
0≤t1,t2≤a

|f |H≤ρ

‖Du(t2, f, θ(t1, ·))‖L(H)

< ∞. (14)
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Proof of Theorem-contd

That is:

E log+ sup
0≤t1,t2≤a

‖u(t2, ·, θ(t1, ·))‖C1 < ∞

where ‖ · ‖C1 denotes the C1 norm on the closed ball
B(0, ρ) in H , center 0 and radius ρ. �
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Stationary point/equilibrium

An F -measurable random variable

Y : Ω → H

is a stationary random point or equilibrium for the
cocycle (u, θ) if

u(t, Y (ω), ω) = Y (θ(t, ω))

for all t ∈ R
+, and ω ∈ Ω.
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Hyperbolic equilibrium

Let Y : Ω → H be a stationary random point for the
cocycle (u, θ) of SNSE (3) with E log+ |Y | < ∞.

Then (Du(t, Y (ω), ω), θ(t, ω)) is a compact linear
cocycle.
The Oseledec-Ruelle operator is given by

Λ(ω) := lim
t→∞

{[

Du(t, Y (ω), ω)
]∗

◦
[

Du(t, Y (ω), ω)
]}1/2t

Limit exists in the uniform operator norm in L(H) per-

fectly in ω ∈ Ω-(Ruelle-Oseledec theorem). [Ru]

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.28/78



Hyperbolic equilibrium

Let Y : Ω → H be a stationary random point for the
cocycle (u, θ) of SNSE (3) with E log+ |Y | < ∞.

Then (Du(t, Y (ω), ω), θ(t, ω)) is a compact linear
cocycle.
The Oseledec-Ruelle operator is given by

Λ(ω) := lim
t→∞

{[

Du(t, Y (ω), ω)
]∗

◦
[

Du(t, Y (ω), ω)
]}1/2t

Limit exists in the uniform operator norm in L(H) per-

fectly in ω ∈ Ω-(Ruelle-Oseledec theorem). [Ru]

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.28/78



Hyperbolic equilibrium

Let Y : Ω → H be a stationary random point for the
cocycle (u, θ) of SNSE (3) with E log+ |Y | < ∞.

Then (Du(t, Y (ω), ω), θ(t, ω)) is a compact linear
cocycle.

The Oseledec-Ruelle operator is given by

Λ(ω) := lim
t→∞

{[

Du(t, Y (ω), ω)
]∗

◦
[

Du(t, Y (ω), ω)
]}1/2t

Limit exists in the uniform operator norm in L(H) per-

fectly in ω ∈ Ω-(Ruelle-Oseledec theorem). [Ru]

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.28/78



Hyperbolic equilibrium

Let Y : Ω → H be a stationary random point for the
cocycle (u, θ) of SNSE (3) with E log+ |Y | < ∞.

Then (Du(t, Y (ω), ω), θ(t, ω)) is a compact linear
cocycle.
The Oseledec-Ruelle operator is given by

Λ(ω) := lim
t→∞

{[

Du(t, Y (ω), ω)
]∗

◦
[

Du(t, Y (ω), ω)
]}1/2t

Limit exists in the uniform operator norm in L(H) per-

fectly in ω ∈ Ω-(Ruelle-Oseledec theorem). [Ru]

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.28/78



Lyapunov exponents-contd

The Oseledec-Ruelle operator is compact, self-adjoint
and non-negative with fixed discrete spectrum

eλ1 > eλ2 > eλ3 > · · · > eλn > · · ·

The Lyapunov exponents

{· · · < λi+1 < λi < · · · < λ2 < λ1}

are values of the almost sure limit

lim
t→∞

1

t
log |Du(t, Y (ω), ω)(g)|H , g ∈ H.
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Ergodicity vs. hyperbolicity

The stationary point Y is said to be hyperbolic if λi 6= 0
for all i ≥ 1 and λ1 > 0.

Ergodicity of the zero equilibrium Y ≡ 0 (when σ0 = 0)
corresponds to a negative top Lyapunov exponent:

λ1 = γ − µ1 −
1

2

∞
∑

k=1

|σk|
2 < 0

“Dynamically": expect ergodicity to be a non-generic
property; but hyperbolicity is generic.

Next result gives necessary and sufficient conditions for
hyperbolicity of the zero equilibrium Y ≡ 0.
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Hyperbolicity of the zero equilbrium

In SNSE (3), the zero equilibrium is hyperbolic if and
only if the following conditions hold

(i) γ − µ1 −
1
2

∑∞
k=1 |σk|

2 > 0;

(ii) γ − µn −
1
2

∑∞
k=1 |σk|

2 6= 0 for all n ≥ 2.

Proof: Use the formula

λn = γ − µn −
1

2

∞
∑

k=1

|σk|
2, n ≥ 1

for the Lyapunov exponents of the linearized cocycle

(Du(t, 0, ω), θ(t, ω)).
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Linearization: Spectral theorem

0 0

ω θ(t, ω)
Ω

Du(t, Y (ω), ω)

θ(t, ·)

E1(ω) = H

E2(ω)

E3(ω)

H

E2(θ(t, ω))

E3(θ(t, ω))
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Random saddles

{U(ω),S(ω) : ω ∈ Ω} := unstable and stable subspaces
associated with the linearized cocycle
(Du(t, Y (ω), ω), θ(t, ω)) ([Mo.3], [M.S] ).

Then get a measurable perfect invariant splitting

H = U(ω) ⊕ S(ω),

Du(t, Y (ω), ω)(U(ω)) = U(θ(t, ω)),

Du(t, Y (ω), ω)(S(ω)) ⊆ S(θ(t, ω)),

for all t ≥ 0. The unstable subspace U(ω) is stationary,

F -measurable and has a fixed dimension, by ergodicity of

the Brownian shift θ.
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Random saddles-Contd

Have exponential dichotomies:

|Du(t, Y (ω), ω)(x)| ≥ |x|eδ1t

for all t ≥ 0, x ∈ U(ω);

|Du(t, Y (ω), ω)(x)| ≤ |x|e−δ2t

for all t ≥ 0, x ∈ S(ω), and δi > 0, fixed, i = 1, 2.
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Random saddles-contd

ω θ(t, ω)
Ω

Du(t, Y (ω), ω)

θ(t, ·)

S(ω)

U(ω)

S(θ(t, ω))

U(θ(t, ω))

H H

0 0
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The stable manifold theorem

Let Y : Ω → H be a hyperbolic stationary random point
for the cocycle (u, θ) of the SNSE (3) with
E log+ |Y | < ∞.

Then there exist perfect stationary families of local
invariant stable/unstable C1 submanifolds S̃(ω), Ũ(ω),
within a tubular neigborhood of the stationary solution
Y (θ(t, ω)).

First, we view a stationary tube around the hyperbolic
equilibrium Y .
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A stationary tube

•

•

•
•

Y (ω)

Y (θ(t, ω))

ρ(ω)

ρ(θ(t, ω))

•

•

•

•

f

u(t, f, ω)

f ∈ H
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Stable/unstable manifolds

H H

ω θ(t, ω)Ω

Y (ω)
Y (θ(t,ω))

• •

u(t, ·, ω)

θ(t, ·)

S̃(ω)

S̃(θ(t,ω))

Ũ(ω)

Ũ(θ(t,ω))

S(ω)

U(ω)

U(θ(t,ω))

S(θ(t,ω))

t > τ1(ω)
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Ũ(ω)
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Invariant manifolds and foliations

With no linear drift (γ = 0), get:

• The Local Invariant Manifold Theorem

• The Global Invariant Foliation Theorem

The local invariant manifold theorem characterizes the
almost sure asymptotic stability of the random flow of
the SNSE (3) in the neighborhood of an ergodic
stationary point Y .

The global invariant foliation theorem gives random
cocycle-invariant foliations in H , characterized by the
Lyapunov exponents at an ergodic stationary point Y .
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Invariant manifold theorem (γ = 0)

Let (u, θ) be the cocycle generated by the SNSE (3) with
γ = 0. Suppose Y is an ergodic stationary point of (3)
with a Lyapunov spectrum {λi : i ≥ 1} and λ1 < 0.
Fix ε ∈ (0,−λ1). Then there exist

(i) a sure event Ω∗ ∈ F with θ(t, ·)(Ω∗) = Ω∗ for all
t ∈ R,

(ii) F -measurable random variables
ρi, βi : Ω∗ → (0, 1), βi > ρi ≥ ρi+1 > 0, i ≥ 1, such
that for each ω ∈ Ω∗, the following is true:

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.40/78



Invariant manifold theorem (γ = 0)

Let (u, θ) be the cocycle generated by the SNSE (3) with
γ = 0. Suppose Y is an ergodic stationary point of (3)
with a Lyapunov spectrum {λi : i ≥ 1} and λ1 < 0.
Fix ε ∈ (0,−λ1). Then there exist

(i) a sure event Ω∗ ∈ F with θ(t, ·)(Ω∗) = Ω∗ for all
t ∈ R,

(ii) F -measurable random variables
ρi, βi : Ω∗ → (0, 1), βi > ρi ≥ ρi+1 > 0, i ≥ 1, such
that for each ω ∈ Ω∗, the following is true:

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.40/78



Invariant manifold theorem (γ = 0)

Let (u, θ) be the cocycle generated by the SNSE (3) with
γ = 0. Suppose Y is an ergodic stationary point of (3)
with a Lyapunov spectrum {λi : i ≥ 1} and λ1 < 0.
Fix ε ∈ (0,−λ1). Then there exist

(i) a sure event Ω∗ ∈ F with θ(t, ·)(Ω∗) = Ω∗ for all
t ∈ R,

(ii) F -measurable random variables
ρi, βi : Ω∗ → (0, 1), βi > ρi ≥ ρi+1 > 0, i ≥ 1, such
that for each ω ∈ Ω∗, the following is true:

Invariant Manifoldsfor Stochastic 2DNavier-Stokes Equations – p.40/78



Invariant manifold theorem (γ = 0)

Let (u, θ) be the cocycle generated by the SNSE (3) with
γ = 0. Suppose Y is an ergodic stationary point of (3)
with a Lyapunov spectrum {λi : i ≥ 1} and λ1 < 0.
Fix ε ∈ (0,−λ1). Then there exist

(i) a sure event Ω∗ ∈ F with θ(t, ·)(Ω∗) = Ω∗ for all
t ∈ R,

(ii) F -measurable random variables
ρi, βi : Ω∗ → (0, 1), βi > ρi ≥ ρi+1 > 0, i ≥ 1, such
that for each ω ∈ Ω∗, the following is true:
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Invariant manifolds-contd

For each i ≥ 1, there is a C1 submanifold S̃i(ω) of
B(Y (ω), ρi(ω)) with the following properties:

(a) S̃i(ω) is the set of all f ∈ B(Y (ω), ρi(ω)) such that

|u(n, f, ω) − Y (θ(n, ω))|H ≤ βi(ω) exp{(λi + ε)n}

for all integers n ≥ 0.
Furthermore, for each f ∈ S̃i(ω):

lim sup
t→∞

1

t
log |u(t, f, ω) − Y (θ(t, ω))|H ≤ λi
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Invariant manifolds-contd

Each S̃i+1(ω) is a submanifold of S̃i(ω); and
TY (ω)S̃i(ω) = Ei(ω). In particular,

codim S̃i(ω) = codim Ei(ω) (fixed and finite).

(b) lim sup
t→∞

1

t
log

[

sup

{

|u(t, f1, ω) − u(t, f2, ω)|H
|f1 − f2|H

:

f1 6= f2, f1, f2 ∈ S̃i(ω)

}]

≤ λi
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Invariant manifolds-contd

(c) (Cocycle-invariance):
There exist τi(ω) ≥ 0 such that

u(t, ·, ω)(S̃i(ω)) ⊆ S̃i(θ(t, ω))

for all t ≥ τi(ω). Also

Du(t, Y (ω), ω)(Ei(ω)) ⊆ Ei(θ(t, ω)), t ≥ 0.
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Global invariant flag theorem

Assume γ = 0 and Y is an ergodic stationary point Y of
the SNSE (3) with a Lyapunov spectrum {λi : i ≥ 1} and
λ1 < 0. Let Ω∗ be as before.

Define the random sets Mi(ω), ω ∈ Ω∗, i ≥ 1, by

Mi(ω)

:=

{

f ∈ H : lim
t→∞

1

t
log |u(t, f, ω) − Y (θ(t, ω)|H ≤ λi

}

for i ≥ 1, ω ∈ Ω∗.

For fixed i ≥ 1, ω ∈ Ω∗, define the sequence {Sn
i (ω)}∞n=1 ,

inductively by:
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Global invariant flag-contd

S1
i (ω) : = S̃i(ω)

Sn
i (ω) :=















u(n, ·, ω)−1
[

S̃i

(

θ(n, ω)
)]

,

if Sn−1
i (ω) ⊆ u(n, ·, ω)−1

[

S̃i

(

θ(n, ω)
)]

Sn−1
i (ω), otherwise,

for all n ≥ 2, where S̃i(ω), i ≥ 1, are the local invariant
C1 manifolds at Y (ω).

Then the following is true for each i ≥ 1 and ω ∈ Ω∗:
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Global invariant flag-contd

(i) Each Mi(ω) is cocycle- invariant:

u(t, ·, ω)
(

Mi(ω)
)

⊆ Mi

(

θ(t, ω)
)

for all t ≥ 0.

(ii) Sn
i (ω) ⊆ Sn+1

i (ω) for all n ≥ 1, and

Mi(ω) =
∞
⋃

n=1

Sn
i (ω)

(perfectly in ω).
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Global invariant flag-contd

(iii) Mi+1(ω) ⊆ Mi(ω).

(iv) For any f ∈ Mi(ω)\Mi+1(ω),

lim
t→∞

1

t
log |u(t, f, ω) − Y (θ(t, ω))|H ∈ (λi+1, λi] .
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Global Invariant Flag

Y (ω) Y (θ(t, ω))

ω θ(t, ω)
Ω

u(t, ·, ω)

θ(t, ·)

M1(ω) = H

M2(ω)

M3(ω)

H

M2(θ(t, ω))

M3(θ(t, ω))
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Burgers spde

Similar (C∞) dynamics holds for one-dimensional
Burgers equation with affine white noise:

du(t) = ν∆u dt − u
∂u

∂ξ
dt + γu(t) dt + σ0 dW0(t)

+ σu(t) dW (t), t > 0, ξ ∈ [0, 1],

u(t, 0) = u(t, 1) = 0 for all t > 0,

u(0, ξ) = f(ξ), ξ ∈ [0, 1].


























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THANK YOU!
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